- 昨日不在
- 12/26Deep Learning for Low-Frequency Extrapolation of Multicomponent Data in Elastic FWI
- 12/13Overcoming catastrophic forgetting in neural networks
- 11/15最优化理论
- 11/1数值分析
- 10/26论文写作(结课报告)
- 10/14禁忌搜索算法
- 8/25地震波阻抗反演论文笔记
- 8/2FISTA解决地震反演问题 [WIP]
- 7/12Seismic impedance inversion based on cycle-consistent generative adversarial network
- 7/12CAUC: Combining Channel Attention U-Net and Convolution for Seismic Data Resolution Improvement
- 7/11地震反演基本知识
- 7/11Identity Mappings in Deep Residual Networks
- 7/10Deep-learning seismic full-waveform inversion for realistic structural models
- 7/7Mapping full seismic waveforms to vertical velocity profiles by deep learning
- 7/3Pyramid Scene Parsing Network
- 7/2四、PyTorch—自定义反向传播
- 7/1扩散模型(Diffusion model)
- 6/29论文写作
- 6/28生成对抗网络(GAN)
- 5/13地震波阻抗反演实验
- 5/4KAN: Kolmogorov–Arnold Networks
- 4/28InversionNet: An Efficient and Accurate Data-Driven Full Waveform Inversion
- 4/26SG-PML吸收边界条件(边界反射问题)
- 4/19波动方程的有限差分解(地震数据正演)
- 4/17ABA-FWI
- 4/17Swim-transformer
- 4/16全卷积网络(FCN)
- 4/16循环神经网络(RNN)
- 4/15卷积神经网络(CNN)
- 4/14神经网络——多层感知机(MLP)
- 4/13三、PyTorch—模型
- 4/12Deep-learning inversion: a next generation seismic velocity-model building method
- 4/11二、PyTorch—DataLoader & Transforms
- 4/10神经网络——激活函数
- 4/10神经网络——损失函数&反向传播
- 4/10一、PyTorch基础
- 4/9神经网络基本概念
- 4/8多标签学习
- 4/7主成分分析(PCA)
- 4/7支持向量机(SVM)
- 4/7联邦学习基本概念
- 4/6kMeans
- 4/6决策树
- 4/6kNN算法
- 4/6逻辑回归
- 4/5ML的数学基础——矩阵篇
- 4/4机器学习
- 4/4线性回归
- 4/3ML基本概念
- 1/26MT19937分析
- 1/19ECC:DLP到ECDLP
- 1/15再探格密码
- 1/13关于我
- 1/13密码学