跳至主要內容
FISTA解决地震反演问题 [WIP]

FISTA解决地震反演问题 [WIP]

  • 迭代收缩阈值算法(Iterative shrinkage-thresholding algorithm, ISTA)是一种用于信号处理和图像重建的优化算法。

    本文将介绍ISTA算法原理和其处理地震反演问题的实际应用。

优化问题

梯度下降

  • 对于一个线性变换问题y=Ax+b\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b},其中A\mathbf{A}y\mathbf{y}已知,b\mathbf{b}为未知噪音,我们需要求解x\mathbf{x}

    本质上这就是一个线性回归问题,从线性回归可知我们可以使用梯度下降解决这个问题。

  • 梯度下降会带来新的问题,对于无约束的优化问题

    minx{F(x)f(x)}.(1) \underset{x}{\min}\{F(x)\equiv f(x)\}.\tag{1}

    若实函数F(x)F(x)在点aa处可微且有定义,梯度下降总是认为F(x)F(x)在点aa沿着梯度相反的方向F(a)-\nabla F(a)下降最快。

    所以当f(x)f(x)连续可微时,若存在一个足够小的数值t>0t>0使得

    x2=x1tF(a).(2) x_2 = x_1 -t\nabla F(a).\tag{2}

    则有F(x1)F(x2)F(x_1) \ge F(x_2)

    梯度下降核心便是通过式2找到序列{xk}\{x_k\},使得F(xk)F(xk1)F(x_k)\ge F(x_{k-1})

    显然,此时初值的选取成了关键,即梯度下降可能陷入局部最优,同时tkt_k的选取(机器学习中的学习率)也是关键,太小会导致迭代太慢,太大会导致无法收敛。


Xenny大约 5 分钟深度学习FISTA