跳至主要內容
最优化理论

最优化理论

  • 2024 研究生课程「最优化理论」笔记 & 复习要点。

1. 绪论

1.1. 概念

  • 分类:可以根据不同属性的性质进行分类,如

    1. 目标函数:分为线性优化和非线性优化
    2. 约束条件:有约束(等式约束、不等式约束)和无约束
    3. 决策变量:离散型、连续型
    4. 最优解:单目标、多目标
    5. 优化问题:凸优化(通常为全局最优解)、非凸优化(多个局部最优解)
  • 解:

    1. 最优解:目标函数取最值的变量
    2. 可行解:满足约束条件,但不一定最优
    3. 梯度:g=f(x)g = \nabla f(x),目标函数的方向导数
    4. Hesse矩阵:G=2f(x)G = \nabla^2 f(x),目标函数的二阶方向导数

Xenny原创大约 19 分钟课程最优化理论
禁忌搜索算法

禁忌搜索算法

解决什么问题

  • 启发式搜索算法——求解近似值

    解决无法找到精确解的复杂优化问题,例如背包问题、神经网络训练、调度问题、工程设计问题。(引入)

    特点是利用过去的经验解决具体问题。 有时候不能保证问题一定结局,却常常能有效解决问题。

  • 分类

    1. 基于群体

      每次迭代搜索一组解,算法依赖于多个个体之间的信息交互。

    2. 基于个体

      关注单个解,从某个解出发迭代得到最优解。

  • 核心思想

    给出多个迭代方向、逃离局部最优解


Xenny原创大约 7 分钟笔记禁忌搜索最优化理论