跳至主要內容
扩散模型(Diffusion model)

扩散模型(Diffusion model)

  • GAN的本质是将生成器的分布逼近真实分布。VAE则是训练两个分布q,pq, p分别表示从真实数据到噪声和噪声到生成数据的映射。

    扩散模型和VAE类似,也是一套从真实数据到噪声的分布以及噪声到生成数据的分布,但是在扩散模型中将这个过程分成了TT步。

    四种生成方式

    扩散模型包含两个部分:扩散和和逆扩散过程。


Xenny原创大约 5 分钟深度学习深度学习无监督学习扩散模型
生成对抗网络(GAN)

生成对抗网络(GAN)

  • 生成对抗网络(GAN,Generative Adversarial Network)是由Ian Goodfellow在2014年提出的一种DL模型。 GAN提出的初衷为解决使用无标签图像训练模型生成新的相似图像的问题。 它包含两个部分:生成器和判别器,它们通过对抗过程相互竞争进行无监督训练。

组成

GAN

生成器(Generator,G)

  • 生成器可以是任意架构的神经网络,输入为随机噪声,输出为生成样本。其目标是使生成的样本尽可能接近真实样本分布直至能够欺骗判别器

Xenny原创大约 3 分钟机器学习机器学习无监督学习GAN
主成分分析(PCA)

主成分分析(PCA)

  • PCA(Principal Component Analysis)是一种无监督学习的线性变换技术,通过将高维数据投影到低维空间中的主要方向来捕获数据的本质结构。

PCA步骤

特征提取

  • 对于一个样本数据,它可以包含很多的特征,例如一个人的身高、体重、性别、年龄,但是并不是每个特征都能用于指定的任务中,例如判断一个人是否患病,身高可能不仅没有作用还会让分类器效果变差,所以对于具体的任务要选择不同的特征输入给模型,这个过程便是特征选择

    而对于特征提取来说,是指从已有的特征中生成新的特征,例如体重和是否应减肥并不是完全相关(不同年龄、身高、性别标准都不一样),更多的我们会用身高和体重计算出新的指标BMI,再更具BMI确定是否应减肥。那么从原有的特征计算出BMI的过程,便是一个特征提取的过程。

  • 而PCA也就是干这样一件事,从原有的特征空间进行特征提取得到特征空间,达到减少维度的效果。


Xenny原创大约 6 分钟机器学习机器学习无监督学习PCA
kMeans

kMeans

  • kMeans是一种无监督学习聚类算法,也就是给样本分簇。是一种适合用在数据分布未知时的聚类算法,聚类的目的是最大化簇的内聚性(同一簇距离近),最小化簇间的耦合性(不同簇距离远)。

    kMeans算法过程
    kMeans算法过程

工作流程


Xenny原创大约 3 分钟机器学习机器学习无监督学习kMeans